87 lines
2.9 KiB
Python
87 lines
2.9 KiB
Python
import argparse
|
|
import sys
|
|
import logging
|
|
import os
|
|
import numpy as np
|
|
import cv2
|
|
|
|
FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'
|
|
logging.basicConfig(format=FORMAT)
|
|
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
|
# Config
|
|
BLUR_KERNEL_SIZE = 3
|
|
THRESH_MIN_PIXEL = 32
|
|
BLOB_MIN_AREA = 120
|
|
HEAT_OVERLAY_ALPHA = 0.5
|
|
|
|
# Load in libodm
|
|
sys.path.append(os.getcwd() + "/target/debug")
|
|
import libpylibodm as pylibodm
|
|
|
|
def handle_image_data(stereo, left_image, right_image):
|
|
|
|
# Convert images to something opencv can use
|
|
left_image_cv = np.frombuffer(bytes(left_image.buffer), np.uint8).reshape(
|
|
left_image.height, left_image.width)
|
|
right_image_cv = np.frombuffer(bytes(right_image.buffer), np.uint8).reshape(
|
|
left_image.height, left_image.width)
|
|
|
|
# Smooth out the raw images
|
|
kernel = np.ones((BLUR_KERNEL_SIZE,BLUR_KERNEL_SIZE),np.float32)/(BLUR_KERNEL_SIZE * BLUR_KERNEL_SIZE)
|
|
left_image_cv_smooth = cv2.filter2D(left_image_cv,-1,kernel)
|
|
right_image_cv_smooth = cv2.filter2D(right_image_cv,-1,kernel)
|
|
|
|
# Compute a disparity map
|
|
disparity = stereo.compute(left_image_cv_smooth, right_image_cv_smooth)
|
|
disparity = cv2.convertScaleAbs(disparity, alpha=1.5)
|
|
|
|
# Contour filtering
|
|
ret, threshold = cv2.threshold(disparity, THRESH_MIN_PIXEL, 255, cv2.THRESH_BINARY)
|
|
contours, hierarchy = cv2.findContours(threshold,
|
|
cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
|
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > BLOB_MIN_AREA]
|
|
mask = np.zeros(disparity.shape, np.uint8)
|
|
cv2.drawContours(mask, filtered_contours, -1, (255), thickness=cv2.FILLED)
|
|
|
|
# Build a heatmap
|
|
heatmap = cv2.applyColorMap(disparity, cv2.COLORMAP_JET)
|
|
masked_heatmap = cv2.bitwise_and(heatmap, heatmap, mask=mask)
|
|
|
|
# Create an overlay from the heatmap
|
|
output_base = cv2.cvtColor(left_image_cv,cv2.COLOR_GRAY2RGB)
|
|
output_base_mod = cv2.convertScaleAbs(output_base, alpha=1.5, beta= 20)
|
|
output = cv2.addWeighted(masked_heatmap, HEAT_OVERLAY_ALPHA, output_base_mod, 1.0, 0.0)
|
|
|
|
cv2.imshow("Left", left_image_cv)
|
|
cv2.imshow("Right", right_image_cv)
|
|
cv2.imshow("Disparity", disparity)
|
|
cv2.imshow("Heatmap", masked_heatmap)
|
|
cv2.imshow("Output", output)
|
|
|
|
def main() -> int:
|
|
# Handle program arguments
|
|
ap = argparse.ArgumentParser(
|
|
prog='odm.py', description='Stream 3D data from a LeapMotion camera')
|
|
args = ap.parse_args()
|
|
|
|
# Connect to the leapmotion device
|
|
print("Connecting to LeapMotion")
|
|
pylibodm.connect(4)
|
|
|
|
# Set up depth mapping
|
|
stereo = cv2.StereoBM_create(numDisparities=32, blockSize=15)
|
|
|
|
# Handle data
|
|
while True:
|
|
frame = pylibodm.get_frame()
|
|
handle_image_data(stereo, frame.left_camera, frame.right_camera)
|
|
|
|
if cv2.waitKey(25) & 0xFF == ord('q'):
|
|
break
|
|
|
|
return 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main()) |