
Turrets and deadzones

A visual look at a turret’s control flow

Evan Pratten

2020-08-31



Turrets and deadzones 2020-08-31

Overview

A turret is generally a simple mechanism to program. In its simplest form, the goal of a turret
is to point at things. Common uses of turrets in robotics are for: aiming launchers at targets,
rotating a camera to look around a space, and swiveling manipulators (like an arm). While the
systems built on top of, and around a turret may be very complex, a turret’s control flow is one
of the simplest there is (figure 1).

Idle Rotating to a goal pose

Received rotate command

Reached goal

Figure 1: A simple turret’s control flow

A turret’s position can be expressed as a rotation. Rotations are essentially a circle, where a
point on the circle can be expressed as an angle in degrees ranging from −180° to +180° (see
figure 2)

0°

+90°−90°

−180/+ 180°

Figure 2: A visualization of a rotation

Evan Pratten 2



Turrets and deadzones 2020-08-31

Infinite-rotation turrets vs. turrets with deadzones

An infinite-rotation turret is a mechanism that can rotate in any direction an infinite number of
times. These turrets do not need any kind of path planning. Calculating the difference between
their current rotational pose, and the goal pose will result in the number of degrees the turret
must rotate from its current position to reach the goal. Unfortunately is is uncommon to find a
turret that allows truly infinite rotation. While some turrets may allow ±1080° rotation (not
covered in this paper), almost all turrets have a deadzone.

Deadzones are the limits of a turrets rotation. These are generally implemented to stop a turret
from ripping apart any sensor cables that may be attached to it. With a deadzone, the previous
control implementation of rotating to the difference between two poses will not always work.
What if the shortest path between two poses crosses of the deadzone? Figure 3 contains a
visualization of a deadzone on a rotation, where dmin is the counter-clockwise-most boundary,
and dmax is the clockwise-most boundary of the deadzone.

dmax dmin

deadzone

0°

+90°−90°

−180/+ 180°

Figure 3: A visualization of a rotation and a deadzone

Evan Pratten 3



Turrets and deadzones 2020-08-31

A very naive solution to this problem is to make turret rotate to the right until it either reaches
the goal pose, or bumps into the deadzone. If the turret bumps into the deadzone, it then starts
rotating left until it hits the goal pose. This solution causes the turret to sweep right and left
until it finds its goal (see figure 4).

Idle

Rotating right

Rotating Left

Command

Reached goal Hit deadzone

Reached goal

Figure 4: Naive deadzone avoidance control flow

While this works, it is the least efficient possible solution. What if the goal is 1° to the left of the
turret’s current position? Instead of just moving left, the turret will have to move all the way to
the right, then come back to the goal. This is a huge waste of time.

Evan Pratten 4



Turrets and deadzones 2020-08-31

Optimal turret control

Recently, I was tasked with designing a solution for determining the shortest path around a
deadzone, and noticed that by shifting a rotation to a new 0-based numbering system (figure 5),
this problem can be solved very easily. To visually simplify this process, I have “unwrapped” the
rotation circle into a line (figure 6).

dmax dmin

deadzone

180°

270°90°

0/360°

Figure 5: Rotation with deadzone crossing
0/360°

dmax dmin

0° 180° 360°

Figure 6: Rotation on a line with deadzone
crossing 0/360°

dmax dmin

deadzone

180°

270°90°

0/360°

Figure 7: Rotation with deadzone crossing
180°

dmaxdmin

0° 180° 360°

Figure 8: Rotation on a line with deadzone
crossing 180°

As shown in figures 6 and 8, the deadzone can have one of two properties. It can either form a
“wall” on each side of the number line, or form a “block” in the middle.

Evan Pratten 5



Turrets and deadzones 2020-08-31

When the deadzone forms a wall, the turret will only ever have to navigate between two points
in the empty space. In this case, the distance the turret needs to travel can always be solved by
taking the difference between the current pose (A) and the goal pose (B). Just as long as B is
never placed inside a deadzone, this will work perfectly.

In the case that the deadzone forms a block, a little bit of math is required to find the shortest
distance between A and B. Even though the difference between 10° and 350° is only 20°,
subtracting them will result in the (incorrect) answer of 340°. Luckily, a small set of equations
can fix this problem.

φ = abs(A−B) (mod 360)
D = copysign({φ > 180 : 360− φ, φ}, A−B)

Figure 9: Calculating D, the relative distance from A to B

Evan Pratten 6


	Overview
	Infinite-rotation turrets vs. turrets with deadzones
	Optimal turret control

